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ABSTRACT

This study proposed improved family of exponemt&imators and dual type ratio estimator of finitepulation mean

using some known population parameters of thelianxivariable in Ranked Set Sampling (RSS). # been shown that
this method is highly beneficial to the estimatimsed on Simple Random Sampling (SRS). The bibmaan squared
error of the proposed estimators with first degeggoroximation are derived. Theoretically, it is shothat the suggested
estimators are more efficient than the estimatorsimple random sampling. It is also shown that shggested dual

estimator is more efficient than the usual ratiireator in Ranked set sampling.
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1. INTRODUCTION

The literature on Ranked set sampling describereat yariety of techniques for using auxiliary inf@tion to obtain
more efficient estimators. Ranked set sampling firs$ suggested by Mcintyre (1952) to increase ¢fiiciency of
estimator of population mean. Kadilar et al. (20089¢d this technique to improve ratio estimatoegiby Prasad (1989).
Mehta and Mandowara (2013) suggested a modified-caim-product estimator of finite population measing ranked
set sampling. Here, we propose improved exponeiatnaily of ratio type estimators and dual estimdtarthe population

mean using some known parameters of the auxiliariable in ranked set sampling.

Letu ={u,u,........., U} be the finite population of size and let y andespectively, be the study and auxiliary

.
variables. A sample of size n is drawn, using samgindom sampling without replacement, to estiniagepopulation
_ 1 q H
meany - NZ y, of study variable y.
i=1

The classical ratio estimator given by Cochran @9dr estimating the population mean , respecyifet SRS,

is defined as

www.iaset.us editor @ aset.us



2 Nitu Mehta (Ranka) & V. L. Mandowara

- (X
Yr = y(fj (1.1)
X

Bahl and Tuteja(1991) was the first to suggestgoeential ratio type estimator as

t =yex X=X (1.2)
1 y Y+;( .

Following Kadilar and Cingi (2006) and Khoshnevisg@®07), Singh Rajesh et al.(2007) define modifeeghonential

estimator for estimatiny as

&

- [(af+bj—(a;+b):|

Ye TV X +b)+ (ax+b)
(1.3)

Where a(# 0),bare either real numbers or the functions of thewmparameters of the auxiliary variabksuch as

coefficient of variation C, ) and coefficient of kurtosig, (X) and correlation coefficient® ).

Srivenkataramana and Tarcy (1980) considered flenimg dual estimator of the population me‘e_{n based on the use of

the mean value of the non-sampled information efatxiliary variable defined as

9 :9 NY—I’];( 0.4
nsu (N_n)y .
oy =y X
nsu Y

- NX-nx_ 1 N\
where X = - Z)ﬂ denotes the mean of non sampled units of the auxilivariable.
(N-n) N-n%

1 - 1
Yy =—Z Y and X =—Z X; are sample means gfand X respectively based on sample sizeHere, it is
NS= NS=

_ 1N _ B _ _
assumed thalX = —Z X; , population mean of auxiliary variable, is known.
i=1

To the first degree of approximation, the bias ar@hn squared error (MSE) of the estimatglgand 9nsu are given as

B(y,)= WY(6°C;+6,C,C,) (1.5)

MSE(y,) = y¥°[cZ +6°CZ - 26p,C.C ] 16)
and
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- - S ;lpxnyCy Sxy
B =E -Y == = 1.7
( ynSU) ( ynSU) N N X ( )
— =2
MSE(Y,,,) = ¥ '[C? + g°C? -20p,,C,C,| w8)
N _
S S, Sy 1, _n DLy =Y)?

where Cy :7)/, C, 2? Py = SnyX y—ﬁ( ignoring f —W) , Sj :ll\l——l’

N T\ 2 N — P o

S(x =X ) =Y)x — X
Sf =—z':1( ' ) , SyX = z'zl(y' )X ) 0= a_X and g = mr

N -1 N-1 2(aX +hb) N —mr

2. RATIO ESTIMATORS IN RANKED SET SAMPLING

In Ranked set sampling (RSS))independent random sets are chosen, each offiznd units in each set are selected
with equal probability and without replacement frolne population. The members of each random setaaneed with
respect to the characteristic of the study variabl@uxiliary variable. Then, the smallest unitsedected from the first

ordered set and the second smallest unit is sdléaie the second ordered set. By this way, thix@dure is continued

until the unit with the largest rank is chosen frtm m™ set. This cycle may be repeatedtimes, somr (=N) units

have been measured during this process.
When we rank on the auxiliary variable, I(ey[i] ,X(i)) denote the ™ judgment ordering for the study variable

andi™ perfect ordering for the auxiliary variable ireth” set, wherd = 1,23.......... ,m

Swami (1996) defined the ratio estimator for theydation mean in ranked set sampling as

- (X
Y mrss = Yinj (_—j , (2.2)
X(n)
_ 1 n _ 1 n
where Y, :Ez Yip X :Ez Xi  are the ranked set sample means for variafesnd X
= —

respectively.

To the first degree of approximation the mean segiarrors (MSE’s) of the estimatoge mrss IS given as
- =2
MSE y RRSS) =Y [9{C5 +Cf _ZpynyCx} _{Wy[i] _Wx(i)}z] (2.2)
3. MODIFIED EXPONENTIAL ESTIMATOR USING RANKED SET SAMPLING

Motivated by Singh Rajesh et al (2007), We propasedified exponential estimator fof using Ranked set sampling as

© e (@X D)~ (@X0 +b>} -

- s X
Y ass = Yim (aX +b) +(axm +b)
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Here y[n] —Ezl: y[i]
1=
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i=1
The Bias and MSE oy 55 can be found as follows-
B(Y wss)=E(Y erss)—Y

ax - aY(1+ &)

Here ? RSS = Y@+ Eo)exp{

aX +2b+aX (l+¢g)

S i X
=Y([1+¢,)exd- O, (1+6g)™" whereeza?
(U+ &) exil- e, 01+ 66, TP

Expanding the right hand side of eq. and retaiténms up to second power éf's , we have
E(Y wed = YE(L+ £, — O, + 8%€2 + Be e, )
So thatB( Y se0) = Y|OPE(E,) + GE(£,8,)], becausE(e,) = E(&,) =0
= B( 9 eRss) =V[y{52Cf + emxcy} - {ezwxz(i) + aNyX(i)}]
Now MSH y ERSS) = E( y eRSS _?)2

=Y Ele, - ¢,

Viele2 o+ p2 o2

=Y E[‘s0 +0°¢; —2675051]

=v*|)cz-wz, +82c2 -wW2,)) - 26(p,.C,.C ~W, )

- J’Cy y[i] (}'Cx x(i)) ypyx y X yx(i)

= MSH y eRSS) :Vz[y{cj +HZC>§ _ngyxcycx} _{Wy[i] _aNx(i)}z]

— 1
, X(n) = —Z X are the ranked set sample means for variayglend X respectively.

(3.2)

(3.3)

The following table shows some other estimatorghef population mean which can be obtained by myttin

different values of constants a and b.
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Estimator Different values of
a b

- 0 0

Y erss = y[n]

9 y ox X - X(n) 1 !
e2,RSS ~ J[n] X + X(n)

y y X - X(n) 1 ﬂz (X)
e3RSS — [n] X + X + 2,32(X)

Vernss= ¥ exp_—y‘*“” B
€4,RSS [n] I X + X + 2Cx

V=Y exg X TXo ! £
e5,RSS [n] I X + X(n) + 2,0

- - B () (X ~ X)) ARG
Yesrss = Yin eXF_ B, (X)(Y +;((n)) +2C,

C, (X = Xm) C | B(X¥)
ye7 RSS — y[n exp ~ .
| C (X +Xm) +25,(X) |
Ty C, (X ~Xw) C, P
e8,RSS — [n] CX(X + X(n)) + 2p
o= oy e — 2O %0) 7
o T LA+ x) + 2C,

y ,Bz(x)(Y _;((n)) 1| B.(X) P
yelO rss = Yin € /82 (X)(Y +;((n)) +2p |

. v _,0(_Y “Xw) | SRy
e11rss — Y[n] P(X +Xm) +2/,(X) |

It is cleared that bias and MSE of the above estirsagiven in the table can be obtained by sulistguthe

values of a and b in (3.2) and (3.3) respectively.
4. MODIFIED DUAL RATIO ESTIMATOR IN RANKED SET SAMP LING

Motivated by Srivenkataramana and Tarcy (1980)pmpose dual ratio-type estimator for using Rardetdsampling as

- NY—mr;((n)
Yonuess= Yo (N-mr)X 4.1)
- ;(* - NY - mr;((n)
or ynsu,RSS: y(n) i) , Wherex(n)

X ~ (N-mr)
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The Bias and MSE ol o, rss can be found as follows

B( ynsu,RSS )= E( ynsu,RSS) _?

NX —mrX(1+ 51)}
(N -mr)X

ynsu, RSS = V(:l' + ‘90 )|:

— mr
= Y(1+ 50)(1_m£1j

- mr mr
=Y|1l+¢g, — E — EE
( ° N-mr* N-mr Olj

Taking expected values on both sides, we have

— S mr mr
E(ynsuRSS):Y[H E(s,)- it E(s,)- it E(£O£l)}

Ty E(Eofl)

Now B( ynsu,RSS )= E( ynsu,RSS)

1 1 1
- fp— S - T H
= N-mr Xl: yX miZ:l: yx(|):l

mr g
= "N Y04 CCy Wi}
_ _ _oomr
= B( Ynsurss) =~ gY{ypxnyCy _WyX(i)}  where J N —mr (4.2)

Now MSH ynsu,RSS) = E( ynsu,RSS _?)2

2
=E \_((1+ g - o M £0£1j—\_(
N—-mr N—-mr
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{{;cy Wb j{»cx Wi b e - x(.)}}

N-mr
= ?z[y{cj +9°C; - ZgIOXYCXCy} _{Wyz(i) W, 29\/\4“')}]

— 52
= MSE(Y,qursd) =Y [y{Cy2 +9°Cy -29p,,C,C,.} —{W,; - gWx(i)}z] (4.3)

5. EFFICIENCY COMPARISON

On comparing (1.6) and (1.8) with (3.3) and (4r8%pectively, we obtain

ST ) “MSE )= A0, e A fo, -6, |

yli

= MSH Y 59 <MSH y,)
o, N 2
MSH Y.sy) ~MSK Y surss) = A, 20, where A= bNy[i] _QW(i)]

= MSH ynsu,RSS) = MSH ynsu)

It is easily seen that the MSE of the suggesteidnagirs given in (3.3) and (4.3) are always smathan the

estimator given in (1.6) and (1.8) respectivelycarese A and A, all are non-negative values. As a result, show tifiet

proposed estimatory oscand Y, rss for the population mean using RSS are more efftdiean the usual estimators

K/e and Y, respectively.

Now Comparison between (2.2) and (3.3), we obtamestimatory g, rss Will be more efficient than the ratio

estimatory ,pss if

MSE (glnsu,RSS)< MSd;l rRSS)
?Z[y{C§ +9°C; - 29,00ny} _{\Nyz(i) +9WG) - 29V\éx(i)}]

< VZ[V{Ci +Cy —2pC,C, } {Wym + W) - Z\Nyxa)}]
3{(92 _1)1’65 —2(g _1)y:[£y } {(g 1}Nx(|) g 1)\Nyx(|) }

(g - 1){J’Cx X(l)} 1){10J’Cy X(l)} <0
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= (g ‘1)[(9 +1){ch2 ‘sz(i)} - 2{prny ‘Wyx(i)}J <0 (5.1)
Now there are two cases -

Case 1:The inequality (5.1) will be satisfied if
g-1<0 and l(g +1){J'C>% _sz(i)}_ 2{pryCX _WVX(i)}J >0

mr
or N -mr <0 and (9 +1){}'Cf _sz(i)}> z{pryCX _Wyx(i)}

mr—N +mr Py Cx Wy (9+1)
- <0 ycz _WZ_ 2
or N —mr and X x(i)
N yoC,C, =W,y < N
= 2 2
mr < 2 d W =W 2(N _mr)

or an

COV(;((n) ,;/[ ] )/7(? - N

mr < V&myYQ 2(N -mr)

or 2 and (5.2)

As in the case of SRS, it is cleattto the first order of approximation the RSSraatbrs are unbiased, using

CoM(X(n) ,;l[n]) = ,BV(;((n) )in (5.2), we obtain

ﬁm&%Jz< N
Vw&m)Y N-—mr

Cy <
and OXY c

X

2(N —mr)

N
f O havemr <—and <—
or C, OC, we have 5 and OXy 2(N-mn)

This condition holds in practice. For example, #1700 andMr =15¢en XY js supposed to be less than 0.60.
Case 2:The inequality (3) will be satisfied if
(9-1)>0 and |_(9 +1){C>% _sz(i)}_ Z{VPCny _Wyzx(i)}l <0

N

N
Here forC,, OC, ,we haven>— & > —F 3
y X 2 & Pu 2(N —mr)

This condition will not hold in practice. For exalapif N=100 andmr = 70then 0Xy is supposed to be greater

than 1.667, which is not possible.
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APPENDIX

To obtain bias and MSE o?/ Rss We put Y/[n] = ?(1+£0) and ;((n) = Y(1+ &)sothatE(g,) = E(£) =0, and

therefore,
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V(f)—E( )_ (y[n])

= i—_lz{sj _%Z ym} [yC Wiy ]

mr Y i=1
i — 2 2 2
similarly, V(&,) = E(&)= |},CX _va(i)]

CO\'G/_[ri' ;((n) )

XY

1 1 19
= =_{Syx _r_n;Tyx(i)} = [ypyXCyCX _Wyx(i)]

and CoM&,,&,) = E(&,,€,) =

XY mr

_ _ _ . X ,
Yimg —Y X — X S S Syx

where = — ,goz%,glz%,CyZZ_—é L Cr==% yx_—y—:pyxcycx

mr Y X Y X
1 1 & 1 1 &
2 2 2
W2, _m?;rm) c Wi = pm _2 ZTV['I andwyxm m?\?;rw) Here we would like to remind that

Ty = My =X o Ty = Hyy =Y and T = (L) = X) (K =)

Further to validate first degree of approximatios, assume that the sample size is large enougetdé(d and |£1|

as small so that the terms involviigy and or&; in a degree greater than two will be negligible.
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